129 research outputs found

    Quantum Distributed Algorithm for Triangle Finding in the CONGEST Model

    Get PDF

    Towards Distributed Two-Stage Stochastic Optimization

    Get PDF
    The weighted vertex cover problem is concerned with selecting a subset of the vertices that covers a target set of edges with the objective of minimizing the total cost of the selected vertices. We consider a variant of this classic combinatorial optimization problem where the target edge set is not fully known; rather, it is characterized by a probability distribution. Adhering to the model of two-stage stochastic optimization, the execution is divided into two stages so that in the first stage, the decision maker selects some of the vertices based on the probabilistic forecast of the target edge set. Then, in the second stage, the edges in the target set are revealed and in order to cover them, the decision maker can augment the vertex subset selected in the first stage with additional vertices. However, in the second stage, the vertex cost increases by some inflation factor, so the second stage selection becomes more expensive. The current paper studies the two-stage stochastic vertex cover problem in the realm of distributed graph algorithms, where the decision making process (in both stages) is distributed among the vertices of the graph. By combining the stochastic optimization toolbox with recent advances in distributed algorithms for weighted vertex cover, we develop an algorithm that runs in time O(log (?) / ?), sends O(m) messages in total, and guarantees to approximate the optimal solution within a (3 + ?)-ratio, where m is the number of edges in the graph, ? is its maximum degree, and 0 < ? < 1 is a performance parameter

    Message Reduction in the LOCAL Model Is a Free Lunch

    Get PDF
    A new spanner construction algorithm is presented, working under the LOCAL model with unique edge IDs. Given an n-node communication graph, a spanner with a constant stretch and O(n^{1 + epsilon}) edges (for an arbitrarily small constant epsilon > 0) is constructed in a constant number of rounds sending O(n^{1 + epsilon}) messages whp. Consequently, we conclude that every t-round LOCAL algorithm can be transformed into an O(t)-round LOCAL algorithm that sends O(t * n^{1 + epsilon}) messages whp. This improves upon all previous message-reduction schemes for LOCAL algorithms that incur a log^{Omega (1)} n blow-up of the round complexity

    Low-Congestion Shortcut and Graph Parameters

    Get PDF
    Distributed graph algorithms in the standard CONGEST model often exhibit the time-complexity lower bound of Omega~(sqrt{n} + D) rounds for many global problems, where n is the number of nodes and D is the diameter of the input graph. Since such a lower bound is derived from special "hard-core" instances, it does not necessarily apply to specific popular graph classes such as planar graphs. The concept of low-congestion shortcuts is initiated by Ghaffari and Haeupler [SODA2016] for addressing the design of CONGEST algorithms running fast in restricted network topologies. Specifically, given a specific graph class X, an f-round algorithm of constructing shortcuts of quality q for any instance in X results in O~(q + f)-round algorithms of solving several fundamental graph problems such as minimum spanning tree and minimum cut, for X. The main interest on this line is to identify the graph classes allowing the shortcuts which are efficient in the sense of breaking O~(sqrt{n}+D)-round general lower bounds. In this paper, we consider the relationship between the quality of low-congestion shortcuts and three major graph parameters, chordality, diameter, and clique-width. The main contribution of the paper is threefold: (1) We show an O(1)-round algorithm which constructs a low-congestion shortcut with quality O(kD) for any k-chordal graph, and prove that the quality and running time of this construction is nearly optimal up to polylogarithmic factors. (2) We present two algorithms, each of which constructs a low-congestion shortcut with quality O~(n^{1/4}) in O~(n^{1/4}) rounds for graphs of D=3, and that with quality O~(n^{1/3}) in O~(n^{1/3}) rounds for graphs of D=4 respectively. These results obviously deduce two MST algorithms running in O~(n^{1/4}) and O~(n^{1/3}) rounds for D=3 and 4 respectively, which almost close the long-standing complexity gap of the MST construction in small-diameter graphs originally posed by Lotker et al. [Distributed Computing 2006]. (3) We show that bounding clique-width does not help the construction of good shortcuts by presenting a network topology of clique-width six where the construction of MST is as expensive as the general case

    Brief Announcement: Fast Aggregation in Population Protocols

    Get PDF
    The coalescence protocol plays an important role in the population protocol model. The conceptual structure of the protocol is for two agents holding two non-zero values a, b respectively to take a transition (a,b) -> (a+b, 0), where + is an arbitrary commutative binary operation. Obviously, it eventually aggregates the sum of all initial values. In this paper, we present a fast coalescence protocol that converges in O(sqrt(n) log^2 n) parallel time with high probability in the model with an initial leader (equivalently, the model with a base station), which achieves an substantial speed-up compared with the naive implementation taking Omega(n) time

    Sublinear-Space Lexicographic Depth-First Search for Bounded Treewidth Graphs and Planar Graphs

    Get PDF
    The lexicographic depth-first search (Lex-DFS) is one of the first basic graph problems studied in the context of space-efficient algorithms. It is shown independently by Asano et al. [ISAAC 2014] and Elmasry et al. [STACS 2015] that Lex-DFS admits polynomial-time algorithms that run with O(n)-bit working memory, where n is the number of vertices in the graph. Lex-DFS is known to be P-complete under logspace reduction, and giving or ruling out polynomial-time sublinear-space algorithms for Lex-DFS on general graphs is quite challenging. In this paper, we study Lex-DFS on graphs of bounded treewidth. We first show that given a tree decomposition of width O(n^(1-?)) with ? > 0, Lex-DFS can be solved in sublinear space. We then complement this result by presenting a space-efficient algorithm that can compute, for w ? ?n, a tree decomposition of width O(w ?nlog n) or correctly decide that the graph has a treewidth more than w. This algorithm itself would be of independent interest as the first space-efficient algorithm for computing a tree decomposition of moderate (small but non-constant) width. By combining these results, we can show in particular that graphs of treewidth O(n^(1/2 - ?)) for some ? > 0 admits a polynomial-time sublinear-space algorithm for Lex-DFS. We can also show that planar graphs admit a polynomial-time algorithm with O(n^(1/2+?))-bit working memory for Lex-DFS

    Emergent velocity agreement in robot networks

    Get PDF
    In this paper we propose and prove correct a new self-stabilizing velocity agreement (flocking) algorithm for oblivious and asynchronous robot networks. Our algorithm allows a flock of uniform robots to follow a flock head emergent during the computation whatever its direction in plane. Robots are asynchronous, oblivious and do not share a common coordinate system. Our solution includes three modules architectured as follows: creation of a common coordinate system that also allows the emergence of a flock-head, setting up the flock pattern and moving the flock. The novelty of our approach steams in identifying the necessary conditions on the flock pattern placement and the velocity of the flock-head (rotation, translation or speed) that allow the flock to both follow the exact same head and to preserve the flock pattern. Additionally, our system is self-healing and self-stabilizing. In the event of the head leave (the leading robot disappears or is damaged and cannot be recognized by the other robots) the flock agrees on another head and follows the trajectory of the new head. Also, robots are oblivious (they do not recall the result of their previous computations) and we make no assumption on their initial position. The step complexity of our solution is O(n)
    • …
    corecore